BP算法、BP神经网络、遗传算法、神经网络这四者之间的关系

2024-05-09

1. BP算法、BP神经网络、遗传算法、神经网络这四者之间的关系

这四个都属于人工智能算法的范畴。其中BP算法、BP神经网络和神经网络
属于神经网络这个大类。遗传算法为进化算法这个大类。
神经网络模拟人类大脑神经计算过程,可以实现高度非线性的预测和计算,主要用于非线性拟合,识别,特点是需要“训练”,给一些输入,告诉他正确的输出。若干次后,再给新的输入,神经网络就能正确的预测对于的输出。神经网络广泛的运用在模式识别,故障诊断中。BP算法和BP神经网络是神经网络的改进版,修正了一些神经网络的缺点。
遗传算法属于进化算法,模拟大自然生物进化的过程:优胜略汰。个体不断进化,只有高质量的个体(目标函数最小(大))才能进入下一代的繁殖。如此往复,最终找到全局最优值。遗传算法能够很好的解决常规优化算法无法解决的高度非线性优化问题,广泛应用在各行各业中。差分进化,蚁群算法,粒子群算法等都属于进化算法,只是模拟的生物群体对象不一样而已。

BP算法、BP神经网络、遗传算法、神经网络这四者之间的关系

2. 神经网络BP算法求代码

输入节点数为3x3x5=45,输出节点数为3x3+2=11,隐节点数通过试凑法得出。
BP神经网络的Matlab代码见附件,修改节点数、增加归一化和反归一化过程即可。

BP算法,误差反向传播(Error Back Propagation, BP)算法。BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。由于多层前馈网络的训练经常采用误差反向传播算法,人们也常把将多层前馈网络直接称为BP网络。
1)正向传播:输入样本->输入层->各隐层(处理)->输出层
注1:若输出层实际输出与期望输出(教师信号)不符,则转入2)(误差反向传播过程)
2)误差反向传播:输出误差(某种形式)->隐层(逐层)->输入层
其主要目的是通过将输出误差反传,将误差分摊给各层所有单元,从而获得各层单元的误差信号,进而修正各单元的权值(其过程,是一个权值调整的过程)。
注2:权值调整的过程,也就是网络的学习训练过程(学习也就是这么的由来,权值调整)。

3. matlab的遗传算法优化BP神经网络

对y=x1^2+x2^2非线性系统进行建模,用1500组数据对网络进行构建网络,500组数据测试网络。由于BP神经网络初始神经元之间的权值和阈值一般随机选择,因此容易陷入局部最小值。本方法使用遗传算法优化初始神经元之间的权值和阈值,并对比使用遗传算法前后的效果。
步骤:
未经遗传算法优化的BP神经网络建模
1、
随机生成2000组两维随机数(x1,x2),并计算对应的输出y=x1^2+x2^2,前1500组数据作为训练数据input_train,后500组数据作为测试数据input_test。并将数据存储在data中待遗传算法中使用相同的数据。
2、
数据预处理:归一化处理。
3、
构建BP神经网络的隐层数,次数,步长,目标。
4、
使用训练数据input_train训练BP神经网络net。

matlab的遗传算法优化BP神经网络

4. 基于遗传算法的BP神经网络

 源码地址: https://github.com/Grootzz/GA-BP     介绍:    利用遗传算法并行地优化BP网络的权值和阈值,从而避免了BP网络在优化权值和阈值时陷入局部最优的缺点
    背景:    这个项目的背景为客运量和货运量的预测
   文件介绍:
   因为项目中用到了GAOT工具包中的函数,所以需要将GAOT工具包加入路径。   操作步骤为:点击GAOT文件--->添加到路径--->选定文件夹和子文件夹   这样,工程中就可以调用GAOT工具包中的函数了
   源码地址: https://github.com/Grootzz/GA-BP